Bus LVDS 3.3V Single Transceiver

General Description

The MAX9163 high-speed bus low-voltage differential signaling (BLVDS) transceiver is designed specifically for heavily loaded multipoint bus applications. The MAX9163 operates from a single 3.3 V power supply, and is pin compatible with the DS92LV010A. The transceiver consists of one differential BLVDS line driver and one LVDS receiver. The driver output and receiver input are connected internally to minimize bus loading. The individual enable logic inputs ($D E, \overline{R E}$) are used to enable the driver or the receiver.

The MAX9163 driver output uses a current-steering configuration to generate a 9 mA (typ) drive current. The driver accepts a single-ended input and translates it to a differential output level of 243 mV (typ) into 27Ω at speeds up to 200Mbps. The MAX9163 receiver detects a differential input as low as 100 mV and translates it to a single-ended output at speeds up to 200 Mbps . The receiver input features a fail-safe circuit that sets the receiver output high when the receiver inputs are undriven and open, terminated, or shorted.

The MAX9163 is offered in an 8 -lead SO package, and is specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Applications

Cell-Phone Base Stations
Add/Drop Muxes
Digital Cross-Connects
DSLAMs
Network Switches/Routers
Backplane Interconnect
Clock Distribution

Features

- BLVDS Signaling
- 3.3V Operation
- Low-Power CMOS Design
- 200Mbps Data-Signaling Rate
- $\pm 1 \mathrm{~V}$ Common-Mode Range
- $\pm 100 \mathrm{mV}$ Receiver Sensitivity
- Flow-Through Pinout
- Receiver Output High for Undriven Open, Short, or Terminated Input
- 8-Lead SO Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9163ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

Pin Configuration

Typical Application Circuit appears at end of data sheet.

Bus LVDS 3.3V Single Transceiver

ABSOLUTE MAXIMUM RATINGS

V to +4.0 V	ng Temperature Range $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DO+/RI+, DO-/RI- to GND-0.3V to +4.0V	Junction Temperature ..+150 ${ }^{\circ} \mathrm{C}$
	Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Driver Short-Circuit CurrentContinuous	ESD Protection
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	HBM (1.5k , 100pF),
	DO+/RI+, DO-/RI-, DIN, ROUT, DE, $\overline{\mathrm{RE}} \ldots .>~ \pm 2 k V$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Stresses beyond those listed under "Absolute Maximum Ratings" may c operation of the device at these or any other conditions beyond those in absolute maximum rating conditions for extended periods may affect devici	manent damage to the device. These are stress ratings only, and functiona in the operational sections of the specifications is not implied. Exposure to ility.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \overline{\mathrm{RE}}=0, \mid \mathrm{VID}=0.1 \mathrm{~V}$ to 2.9 V , common-mode input voltage $\left(\mathrm{V}_{\mathrm{CM}}\right)=\left|\mathrm{V}_{\mathrm{ID}} / 2\right|$ to $3.0 \mathrm{~V}-\mathrm{IV} \mathrm{ID} \mid / 2, \mathrm{R}_{\mathrm{L}}=27 \Omega \pm 1 \%$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V} C \mathrm{C}=3.3 \mathrm{~V}, \mathrm{VIDI}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SINGLE-ENDED INPUTS (DIN, DE, $\overline{\mathrm{RE}}$)						
Input High Voltage	V_{IH}		2.0		VCC	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		0		0.8	V
Input Current	IIN	$\overline{\mathrm{RE}}, \mathrm{DE}, \mathrm{DIN}=$ high or low	-10		+10	$\mu \mathrm{A}$
Input Diode Clamp Voltage	$V_{C L}$	ICLAMP $=-18 \mathrm{~mA}$	-1.5			V
DRIVER OUTPUT (DO+/RI+, DO-/RI-)						
Differential Output Voltage	VOD	Figure 1	180	250	360	mV
Change in Magnitude of VOD Between Complementary Output States	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure 1		0.2	25	mV
Offset Voltage	Vos	Figure 1	1.00	1.28	1.65	V
Change in Magnitude of VOS Between Complementary Output States	$\Delta \mathrm{V}$ OS	Figure 1		1.4	25	mV
Output Short-Circuit Current	IOSD	$\mathrm{DO}+/ \mathrm{RI}+=0, \mathrm{DIN}=\mathrm{V}_{\mathrm{CC}}$		-9	-20	mA
		DO-/RI- = 0, DIN = 0		-9	-20	
Output Capacitance	Cout	Capacitance from DO+/RI+ or DO-/RIto GND		6.9		pF
RECEIVER INPUT (DO+/RI+, DO-/RI-)						
Differential Input High Threshold	$V_{\text {TH }}$	$D E=$ low			100	mV
Differential Input Low Threshold	$\mathrm{V}_{\text {TL }}$	DE = low	-100			mV
Input Current	In	$\begin{aligned} & \mathrm{DE}=\text { low, } \mathrm{VCC}=0 \text { or } 3.6 \mathrm{~V} \text {; } \\ & \mathrm{DO}+/ \mathrm{RI}+, \mathrm{DO}-/ \mathrm{RI}-=2.4 \mathrm{~V} \text { or 0; Figure } 6 \end{aligned}$	-20		+20	$\mu \mathrm{A}$
RECEIVER OUTPUT (ROUT)						
Output High Voltage	VOH	$\mathrm{V}_{\text {ID }}=+100 \mathrm{mV}$	2.90	3.28		V
		Inputs open $\mathrm{IOH}^{\text {a }}=-400 \mu \mathrm{~A}$,				
		Inputs shorted \quad DE = Low				
		Inputs terminated, $\mathrm{RL}_{\mathrm{L}}=27 \Omega$				
Output Low Voltage	VoL	$\mathrm{lOL}=+2.0 \mathrm{~mA}, \mathrm{~V}$ ID $=-100 \mathrm{mV}, \mathrm{DE}=$ low		0.025	0.4	V
Output Short-Circuit Current	los	$\mathrm{V}_{\mathrm{ID}}=+100 \mathrm{mV}, \mathrm{ROUT}=0, \mathrm{DE}=$ low	-5	-25	-85	mA

Bus LVDS 3.3V Single Transceiver

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} C \mathrm{C}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \overline{\mathrm{RE}}=0, \mid \mathrm{VID}=0.1 \mathrm{~V}$ to 2.9 V , common-mode input voltage $(\mathrm{V} C \mathrm{M})=|\mathrm{V} \operatorname{ID} / 2|$ to $3.0 \mathrm{~V}-\left|\mathrm{V}_{\mathrm{ID}}\right| / 2, R \mathrm{R}=27 \Omega \pm 1 \%$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V} C \mathrm{C}=3.3 \mathrm{~V}, \mathrm{VIDI}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1,2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY CURRENT						
Supply Current	IcC	$D E=V_{C C}, \overline{R E}=0$		13.3	20	mA
Driver Supply Current	ICCD	$D E=\overline{\mathrm{RE}}=\mathrm{V}_{C C}$		13.3	20	mA
Receiver Supply Current	ICCR	$D E=\overline{\mathrm{RE}}=0$		4.4	8	mA
Disable Supply Current	ICCZ	$D E=0, \overline{\mathrm{RE}}=\mathrm{V}_{C C}$		4.4	7.5	mA

AC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{IV}_{\mathrm{ID}}=0.2 \mathrm{~V}, \mathrm{~V}_{C M}=1.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=27 \Omega \pm 1 \%, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mid \mathrm{VIDI}=$ $0.2 \mathrm{~V}, \mathrm{~V} C M=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 3, 4, 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DRIVER, $\mathrm{DE}=\overline{\mathrm{RE}}=\mathrm{V} \mathbf{C C}$						
Differential High-to-Low Propagation Delay	tPHLD	Figure 2	1.0	3.2	5.0	ns
Differential Low-to-High Propagation Delay	tPLHD	Figure 2	1.0	3.0	5.0	ns
Differential Skew I tpHLD - tplhD I	tSKD	Figure 2		0.2	1.0	ns
Rise Time	tTLHD	Figure 2		0.8	2.0	ns
Fall Time	tThld	Figure 2		0.6	2.0	ns
Disable Time High to Z	tPHZ	Figure 3	0.5	2.2	9.0	ns
Disable Time Low to Z	tpLZ	Figure 3	0.5	2.2	10.0	ns
Enable Time Z to High	tPZH	Figure 3	2.0	3.2	7.0	ns
Enable Time Z to Low	tPZL	Figure 3	1.0	3.2	9.0	ns
RECEIVER, DE $=\overline{\mathbf{R E}}=\mathbf{0}$						
Differential High-to-Low Propagation Delay	tPHL	Figure 4	2.5	6.4	12.0	ns
Differential Low-to-High Propagation Delay	tPLH	Figure 4	2.5	6.0	10.0	ns
Differential Skew I tpHL - tPLH I	tSKD	Figure 4		0.4	2.0	ns
Rise Time	tTLH	Figure 4		1.0	4.0	ns
Fall Time	tTHL	Figure 4		0.4	4.0	ns
Disable Time High to Z	tPHZ	Figure 5	2.0	5.0	6.0	ns
Disable Time Low to Z	tplz	Figure 5	2.0	4.4	7.0	ns
Enable Time Z to High	tPZH	Figure 5	2.0	4.6	13.0	ns
Enable Time Z to Low	tPZL	Figure 5	2.0	4.3	10.0	ns

Note 1: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are 100\% tested at $T_{A}=+25^{\circ} \mathrm{C}$.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to device ground except $\mathrm{V}_{T H}, \mathrm{~V}_{T L}, \mathrm{~V}_{I D}, \mathrm{~V}_{\mathrm{OD}}$, and $\Delta \mathrm{V}_{\mathrm{OD}}$.
Note 3: C_{L} includes probe and jig capacitance.
Note 4: AC parameters are guaranteed by design and characterization.
Note 5: Generator waveforms for all tests unless otherwise specified: $f=100 \mathrm{MHz}, Z_{0}=50 \Omega$, $t_{R}=t_{F}=6.0 n s(0$ to $3 \mathrm{~V}, 0 \%$ to 100%) for DE and $\overline{\mathrm{RE}}, \mathrm{t}_{\mathrm{R}}=\mathrm{tF}_{\mathrm{F}}=3.0 \mathrm{~ns}\left(0\right.$ to $3 \mathrm{~V}, 0 \%$ to 100%) for DIN , and $\mathrm{t}_{\mathrm{R}}=\mathrm{tF}_{\mathrm{F}}=1.0 \mathrm{~ns}\left(\mathrm{IV} \mathrm{VID}^{\mathrm{D}}=0.2 \mathrm{~V}, 20 \%\right.$ to $\left.80 \%\right)$ for $\mathrm{DO}+/ \mathrm{RI}+$ and DO-/RI- inputs.

Bus LVDS 3.3V Single Transceiver

Figure 1. Differential Driver DC Test Circuit

Figure 2. Driver Differential Propagation Delay and Transition Time Test Circuit and Waveforms

Figure 3. Driver High-Impedance Delay Test Circuit and Waveforms

Bus LVDS 3.3V Single Transceiver

 Test Circuits/Timing Diagrams (continued)

Figure 4. Receiver Propagation Delay and Transition Time Test Circuit and Waveforms

Figure 5. Receiver High-Impedance Delay Test Circuit and Waveforms

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{FREQ}=100 \mathrm{MHz}, \mathrm{V}_{\mathrm{ID}}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=27 \Omega \pm 1 \%, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Bus LVDS 3.3V Single Transceiver

$\overline{\left(V_{C C}=3.3 \mathrm{~V}, F R E Q=100 \mathrm{MHz}, \mathrm{V}_{\mathrm{ID}}=0.2 \mathrm{~V}, \mathrm{~V}_{C M}=1.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=27 \Omega \pm 1 \%, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text {, unless otherwise noted.) }\right.}$

DRIVER DIFFERENTIAL SKEW
vs. SUPPLY VOLTAGE

DRIVER SUPPLY CURRENT
vs. FREQUENCY

DRIVER DIFFERENTIAL PROPAGATION DELAY vs. SUPPLY VOLTAGE

DRIVER DIFFERENTIAL SKEW
vs. TEMPERATURE

SUPPLY CURRENT (Icc)
vs. TEMPERATURE

DRIVER DIFFERENTIAL PROPAGATION DELAY vs. TEMPERATURE

DRIVER TRANSITION TIME vs. SUPPLY VOLTAGE

Bus LVDS 3.3V Single Transceiver

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{FREQ}=100 \mathrm{MHz}, \mathrm{VID}=0.2 \mathrm{~V}, \mathrm{~V} C M=1.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=27 \Omega \pm 1 \%, \mathrm{CL}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Bus LVDS 3.3V Single Transceiver

Pin Description

PIN	NAME	FUNCTION
1	DE	LVTTL/LVCMOS Driver Enable Input. The driver is enabled when DE is high. When DE is low, the driver output is disabled and is high impedance.
2	DIN	LVTTL/LVCMOS Driver Input
3	ROUT	LVTTL/LVCMOS Receiver Output
4	GND	Ground
5	$\overline{\mathrm{RE}}$	LVTTL/LVCMOS Receiver Enable Input. The receiver is enabled when $\overline{\mathrm{RE}}$ is low. When $\overline{\mathrm{RE}}$ is high, the receiver output is disabled and is high impedance.
6	DO-/RI-	Inverting BLVDS Driver Output/Receiver Input
7	DO+/RI+	Noninverting BLVDS Driver Output/Receiver Input
8	$\mathrm{VCC}_{\text {CC }}$	Power-Supply Input. Bypass VCC to GND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ ceramic capacitors.

Detailed Description

The MAX9163 high-speed BLVDS transceiver is designed specifically for heavily loaded multipoint bus applications. The MAX9163 operates from a single 3.3V power supply, and is pin compatible with DS92LV010A. The transceiver consists of one differential BLVDS line driver and one LVDS receiver. The driver outputs and receiver inputs are connected internally to minimize bus loading. The driver and receiver can be enabled or disabled individually or simultaneously by the use of enable logic inputs ($D E, \overline{R E}$).
The MAX9163 driver output uses a current-steering configuration to generate a 9 mA (typ) output current. This current-steering approach induces less ground bounce and no shoot-through current, enhancing noise margin and system speed performance. The outputs are short-circuit current limited. The MAX9163 currentsteering output requires a resistive load to terminate the signal and complete the transmission loop. With a typical 9 mA output current, the MAX9163 produces a 243 mV output voltage when driving a bus terminated with two 54Ω resistors ($9 \mathrm{~mA} \times 27 \Omega=243 \mathrm{mV}$).
The MAX9163 receiver detects a differential input as low as 100 mV and translates it to a single-ended output. The device features an in-path fail-safe circuit that sets the receiver output high when the receiver inputs are undriven and open, terminated, or shorted.

Receiver In-Path Fail-Safe

The MAX9163 has in-path fail-safe circuitry, which is designed with a +35 mV input offset voltage, a $2.5 \mu \mathrm{~A}$ current source between VCC and the noninverting input, and a $5 \mu \mathrm{~A}$ current sink between the inverting input and ground (Figure 6). If the differential input is open, the $2.5 \mu \mathrm{~A}$ current source pulls the input to about $\mathrm{V} C \mathrm{C}-0.7 \mathrm{~V}$ and the $5 \mu \mathrm{~A}$ source sink pulls the inverting
input to ground, which drives the receiver output high. If the differential input is shorted or terminated with a typical value termination resistor, the +35 mV offset drives the receiver output high. If the input is terminated and floating, the receiver output is driven high by the +35 mV offset, and the $2: 1$ current sink to current source ratio $(5 \mu \mathrm{~A}: 2.5 \mu \mathrm{~A})$ pulls the inputs to ground. This can be an advantage when switching between drivers on a multipoint bus. The change in common-mode voltage on the MAX9163 is from ground to the typical driver offset voltage of 1.2 V . This is less than the change from V_{CC} to 1.2 V found on some circuits where the fail-safe circuitry pulls the bus to VCC.

Effects of Capacitive Loading

The characteristic impedance of a differential PC board trace is uniformly reduced when equal capacitive loads are attached at equal intervals (provided that the transition time of the signal being driven on the trace is longer than the delay between loads). This kind of loading is typical of multipoint buses where cards are attached at 1 in or 0.8 in intervals along the length of a backplane. The reduction in characteristic impedance is approximated by the following formula:

$$
Z_{D F} \text {-loaded }=Z_{D F} \text {-unloaded } \times \sqrt{[C O /(C O+(N \times C L / L))]}
$$

where:
ZDF-unloaded $=$ unloaded differential characteristic impedance
$\mathrm{Co}=$ unloaded trace capacitance ($\mathrm{pF} /$ unit length)
$C L=$ value of each capacitive load (pF)
$N=$ number of capacitive loads
$L=$ trace length

Bus LVDS 3.3V Single Transceiver

For example, if $C_{o}=2.5 p F / i n, C_{L}=10 p F, N=18, L=$ 18 in , and $Z D F$-unloaded $=120 \Omega$, the loaded differential impedance is:

$$
\text { ZDF-loaded }=120 \Omega \times \sqrt{[2.5 \mathrm{pF} /(2.5 \mathrm{pF}+(18 \times 10 \mathrm{pF} / 18 \mathrm{in}))]}
$$

where ZDF-loaded $=54 \Omega$

Figure 6. Input Fail-Safe Circuit
In this example, capacitive loading reduces the characteristic impedance from 120Ω to 54Ω. The load seen by a driver located on a card in the middle of the bus is 27Ω because the driver sees two 54Ω terminations in parallel. A typical LVDS driver (rated for a 100Ω load) would not develop a large enough differential signal to be detected reliably by an LVDS receiver.
The MAX9163 BLVDS driver is designed and specified to drive a 27Ω load to differential voltage levels of 180 mV to 360 mV . A standard LVDS receiver is able to detect this level of differential signal.
Short extensions off the bus, called stubs, contribute to capacitive loading. Keep stubs less than 1 in for a good balance between ease of component placement and good signal integrity.
The MAX9163 driver outputs are current-source drivers and drive larger differential signal levels into resistances higher than 27Ω and smaller levels into resistances lower than 27Ω (see the Typical Operating Characteristics curves). To keep loading from reducing bus impedance below the rated 27Ω load, PC board traces can be designed for higher unloaded characteristic impedances.

Power-On Reset

The power-on reset voltage of the MAX9163 is typically 2.2 V . When the supply falls below this voltage, the device is disabled and the outputs ($\mathrm{DO}+/ \mathrm{RO}+$, $\mathrm{DO}-/ \mathrm{RO}-$, and ROUT) are high impedance.

Applications Information

Power-Supply Bypassing
Bypass Vcc with high-frequency, surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smaller valued capacitor closest to VCC.

Termination
In the example in the Effects of Capacitive Loading section, the loaded differential impedance of the bus is reduced to 54Ω. Because the bus can be driven from any card position, it must be terminated at each end. A parallel termination of 54Ω at each end of the bus placed across the traces provides a proper termination. The total load seen by the driver is 27Ω.
In a multidrop bus where the driver is at one end and receivers are connected at regular intervals along the bus, the bus has lowered impedance due to capacitive loading. Assuming the same impedance as calculated in the multidrop example (54Ω), the multidrop bus can be terminated with a single, parallel-connected 54Ω resistor at the far end of the driver. Only a single resistor is required because the driver sees one 54Ω differential trace. The signal swings are larger with a 54Ω load. In general, parallel terminate each end of the bus with a resistor matching the differential impedance of the bus (taking into account any reduced impedance due to loading).

Traces, Cables, and Connectors
The characteristics of differential input and output connections affect the performance of the device. Use con-trolled-impedance traces, cables, and connectors with matched characteristic impedance.
Ensure that noise couples as common mode by running the traces of a differential pair close together. Reduce within-pair skew by matching the electrical length of the conductors within a differential pair. Excessive skew can result in a degradation of magnetic field cancellation.
Maintain the distance between conductors within a differential pair to avoid discontinuities in differential impedance. Minimize the number of vias to further prevent impedance discontinuities.

Board Layout
For BLVDS applications, a four-layer PC board with separate power, ground, BLVDS, LVDS, and logic signal layers is recommended. Separate the LVTTL/ LVCMOS and BLVDS signals to prevent coupling.

Bus LVDS 3.3V Single Transceiver

Typical Application Circuit

TRANSISTOR COUNT: 901
PROCESS: CMOS

Bus LVDS 3.3V Single Transceiver

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

TOP VIEW

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.053	0.069	1.35	1.75		
A1	0.004	0.010	0.10	0.25		
B	0.014	0.019	0.35	0.49		
C	0.007	0.010	0.19			
e	0.050		BSC	1.27		BSC
E	0.150	0.157				
H	0.228	0.244	5.80	4.00		
L	0.016	0.050	0.40	1.27		

VARIATIONS:

	INCHES		MILLIMETERS				
DIM	MIN	MAX	MIN	MAX	N	MS012	
D	0.189	0.197	4.80	5.00	8	AA	
D	0.337	0.344	8.55	8.75	14	AB	
D	0.386	0.394	9.80	10.00	16	AC	

SIDE VIEW

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006")
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MSO12.
6. $N=$ NUMBER OF PINS.

FRONT VIEW

21-0041

